: :其他软件 2020-09-11 22:55:27
方案一:优化现有mysql数据库。优点:不影响现有业务,源程序不需要修改代码,成本最低。缺点:有优化瓶颈,数据量过亿就玩完了。
方案二:升级数据库类型,换一种100%兼容mysql的数据库。优点:不影响现有业务,源程序不需要修改代码,你几乎不需要做任何操作就能提升数据库性能,缺点:多花钱
方案三:一步到位,大数据解决方案,更换newsql/nosql数据库。优点:扩展性强,成本低,没有数据容量瓶颈,缺点:需要修改源程序代码
以上三种方案,按顺序使用即可,数据量在亿级别一下的没必要换nosql,开发成本太高。三种方案我都试了一遍,而且都形成了落地解决方案。该过程心中慰问跑路的那几个开发者一万遍 :)
方案一详细说明:优化现有mysql数据库
跟阿里云数据库大佬电话沟通 and Google解决方案 and 问群里大佬,总结如下(都是精华):
1.数据库设计和表创建时就要考虑性能
2.sql的编写需要注意优化
3.分区
4.分表
5.分库
1.数据库设计和表创建时就要考虑性能
mysql数据库本身高度灵活,造成性能不足,严重依赖开发人员能力。也就是说开发人员能力高,则mysql性能高。这也是很多关系型数据库的通病,所以公司的dba通常工资巨高。
设计表时要注意:
1.表字段避免null值出现,null值很难查询优化且占用额外的索引空间,推荐默认数字0代替null。
2.尽量使用INT而非BIGINT,如果非负则加上UNSIGNED(这样数值容量会扩大一倍),当然能使用TINYINT、SMALLINT、MEDIUM_INT更好。
3.使用枚举或整数代替字符串类型
4.尽量使用TIMESTAMP而非DATETIME
5.单表不要有太多字段,建议在20以内
6.用整型来存IP
索引
1.索引并不是越多越好,要根据查询有针对性的创建,考虑在WHERE和ORDER BY命令上涉及的列建立索引,可根据EXPLAIN来查看是否用了索引还是全表扫描
2.应尽量避免在WHERE子句中对字段进行NULL值判断,否则将导致引擎放弃使用索引而进行全表扫描
3.值分布很稀少的字段不适合建索引,例如"性别"这种只有两三个值的字段
4.字符字段只建前缀索引
5.字符字段最好不要做主键
6.不用外键,由程序保证约束
7.尽量不用UNIQUE,由程序保证约束
8.使用多列索引时主意顺序和查询条件保持一致,同时删除不必要的单列索引
简言之就是使用合适的数据类型,选择合适的索引
选择合适的数据类型(1)使用可存下数据的最小的数据类型,整型 < date,time < char,varchar < blob(2)使用简单的数据类型,整型比字符处理开销更小,因为字符串的比较更复杂。如,int类型存储时间类型,bigint类型转ip函数(3)使用合理的字段属性长度,固定长度的表会更快。使用enum、char而不是varchar(4)尽可能使用not null定义字段(5)尽量少用text,非用不可最好分表# 选择合适的索引列(1)查询频繁的列,在where,group by,order by,on从句中出现的列(2)where条件中<,<=,=,>,>=,between,in,以及like 字符串+通配符(%)出现的列(3)长度小的列,索引字段越小越好,因为数据库的存储单位是页,一页中能存下的数据越多越好(4)离散度大(不同的值多)的列,放在联合索引前面。查看离散度,通过统计不同的列值来实现,count越大,离散程度越高:
原开发人员已经跑路,该表早已建立,我无法修改,故:该措辞无法执行,放弃!
2.sql的编写需要注意优化
1.使用limit对查询结果的记录进行限定
2.避免select *,将需要查找的字段列出来
3.使用连接(join)来代替子查询
4.拆分大的delete或insert语句
5.可通过开启慢查询日志来找出较慢的SQL
6.不做列运算:SELECT id WHERE age + 1 = 10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边
7.sql语句尽可能简单:一条sql只能在一个cpu运算;大语句拆小语句,减少锁时间;一条大sql可以堵死整个库
8.OR改写成IN:OR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内
9.不用函数和触发器,在应用程序实现
10.避免%xxx式查询
11.少用JOIN
12.使用同类型进行比较,比如用'123'和'123'比,123和123比
13.尽量避免在WHERE子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描
14.对于连续数值,使用BETWEEN不用IN:SELECT id FROM t WHERE num BETWEEN 1 AND 5
15.列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大
原开发人员已经跑路,程序已经完成上线,我无法修改sql,故:该措辞无法执行,放弃!
引擎
引擎
目前广泛使用的是MyISAM和InnoDB两种引擎:
MyISAM
MyISAM引擎是MySQL 5.1及之前版本的默认引擎,它的特点是:
1.不支持行锁,读取时对需要读到的所有表加锁,写入时则对表加排它锁
2.不支持事务
3.不支持外键
4.不支持崩溃后的安全恢复
5.在表有读取查询的同时,支持往表中插入新纪录
6.支持BLOB和TEXT的前500个字符索引,支持全文索引
7.支持延迟更新索引,极大提升写入性能
8.对于不会进行修改的表,支持压缩表,极大减少磁盘空间占用
InnoDB
InnoDB在MySQL 5.5后成为默认索引,它的特点是:
1.支持行锁,采用MVCC来支持高并发
2.支持事务
3.支持外键
4.支持崩溃后的安全恢复
5.不支持全文索引
总体来讲,MyISAM适合SELECT密集型的表,而InnoDB适合INSERT和UPDATE密集型的表
MyISAM速度可能超快,占用存储空间也小,但是程序要求事务支持,故InnoDB是必须的,故该方案无法执行,放弃!
3.分区
MySQL在5.1版引入的分区是一种简单的水平拆分,用户需要在建表的时候加上分区参数,对应用是透明的无需修改代码
对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对SQL层来说是一个完全封装底层的黑盒子。MySQL实现分区的方式也意味着索引也是按照分区的子表定义,没有全局索引
用户的SQL语句是需要针对分区表做优化,SQL条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,可以通过EXPLAIN PARTITIONS来查看某条SQL语句会落在那些分区上,从而进行SQL优化,我测试,查询时不带分区条件的列,也会提高速度,故该措施值得一试。
分区的好处是:
1.可以让单表存储更多的数据
2.分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作
3.部分查询能够从查询条件确定只落在少数分区上,速度会很快
4.分区表的数据还可以分布在不同的物理设备上,从而高效利用多个硬件设备
5.可以使用分区表赖避免某些特殊瓶颈,例如InnoDB单个索引的互斥访问、ext3文件系统的inode锁竞争
6.可以备份和恢复单个分区。
TAG: MySQL,数据库,大表优化
10-12数据库连接vc转到EXCEL的方法
10-01qt和数据库的教务系统的设计与实现
10-01C语言链接mysql数据库
09-29Qt连接MySQL数据库的几种方式
11-20Excel中的表格数据导入数据库中
11-13Excel数据导入到Access数据库中
11-11Access数据库修改保存位置
11-11access数据库设置姓名字段为必填字段
11-11Access数据库字段设置成无重复索引
11-10Access数据库修改报表微标